Power Generation Potential Based on Wind Speed Variations in Wind Power Plant Prototypes

Authors

  • Restu Mukti Utomo Department of Electrical Engineering, Mulawarman University
  • Muhammad Rifaldi Department of Electrical Engineering, Mulawarman University
  • Agung Tandiminanga Department of Electrical Engineering, Mulawarman University
  • Siska Mayra Andini Department of Electrical Engineering, Mulawarman University
  • Nur Rani Alham Department of Electrical Engineering, Mulawarman University

Abstract

Future energy is a term for developing renewable energy (RE) potential as a solution or alternative to fulfill the needs of increasing energy consumption. Conventional energy
production depends on dwindling fossil energy sources, its renewal takes hundreds of millions of years, and its side effect can increase global warming. One renewable energy source that is environmentally friendly and available in nature with unlimited quantities is wind. Indonesia is an archipelago country with a tropical climate that can use wind energy as a wind power plant (PLTB), either on the coast or hills. A wind power plant (PLTB) is a generator that converts wind energy into electrical energy by using turbines as movers and generators as
power generators. This paper aims to determine the wind energy potential for electricity generation based on wind variations. Data collection in this study uses a small-scale PLTB
prototype built by design and then measured using a multimeter and anemometer. The wind turbines used for generating electricity are four blades with a length of 45 cm and a breadth of 7 cm. The tool used as a generator is a DC motor with a capacity of 12 volts. Based on the field testing results, it found that when the highest wind speed of 3,5 m/s, the DC motor produced a current of 0,011004 Amperes and a voltage of 0,426563 Volts and at the lowest wind speed of 1,9 m/s, the DC motor produced a current of 0,005961 Amperes and a voltage of 0,231563 Volts. It can be concluded that the wind speed, type, and size of the blades and the specification of the generator greatly influence electric power generation.

References

Hamdi, “Angin,”, Energi Terbarukan, Jakarta : Kencana, 2016, 137–169.

A. Subandi, “Pembangkit Listrik Tenaga Angin dengan Memanfaatkan Kecepatan Angin Rendah,” pp. 111–115, 2016.

A. Sheptiawan, D. Notosudjono, and D. Fiddiansyah, “Studi Potensi Energi Angin di Merak Banten untuk Membangkitkan Energi Listrik,” Univ. Pakuan Bogor, pp. 1–16, 2001.

A. Adriani, “Perancangan Pembangkit Listrik Kincir Angin Menggunakan Generator Dinamo 10 Drillini Terhadap Empat Sumbu Horizontal,” J. INSTEK (Informatika Sains dan Teknol., vol. 3, no. 1, pp. 71–80, 2018, doi: 10.24252/instek.v3i1.4821.

Arridina Susan S. dan Husin Ibrahim, "Energi Angin,", Buku Ajar Energi Baru dan Terbarukan, Sleman : Deepublish, 2020, 39–68.

Aksan, S. Bone, and S. Said, “Modul Simulator Turbin Angin Untuk Media Pembelajaran di Laboratorium Sistem Tenaga Listrik,” Pros. Semin. Has. Penelit., vol. 2018, pp. 72–78, 2018.

R. S. Lubis and M. Gapy, “Pemanfaatan Alternator Sebagai Pembangkit Listrik Tenaga Bayu (PLTB),” J. Karya Ilm. Tek. Elektro, vol. 4, no. 4, pp. 19–24, 2019.

F. Aryanto, I. M. Mara, and M. Nuarsa, “Terhadap Unjuk Kerja Turbin Angin Poros Horizontal,” Din. Tek. Mesin, vol. 3, no. 1, pp. 50–59, 2013.

Sukandarrumidi, Herry Zadrak Kotta, dan Djoko Wintolo. Energi Terbarukan Konsep Dasar Menuju Kemandirian Energi, Yogyakarta : Gadjah Mada University Press, 2018

Iqbal Muhammad dan Adinandra R M Sisdarmanto.Pembuatan Sistem Pembangkit Listrik Sunardi dan Sorometa Zeazeli Erwinda, “Perancangan Prototipe Pembangkit Listrik Tenaga Bayu Pada Daerah Tropis Untuk Irigasi Pertanian,” J. Raya Puspitek, Tek. Elektro, vol.3, no. 2, pp 206-213, 2020.

Downloads

Published

2022-06-01