Optimizing Economic Value Through Enhanced Nutrient Digestibility in Ruminants: Recent Advances and Implications
Keywords:
digestibility, nutrient, ruminants, optimization, efficiency, economyAbstract
Efficient nutrient digestibility is essential to optimize feed efficiency, performance, and productivity in ruminants production. Therefore, this review aims to explore economic implications of technology to increase nutrient digestibility in ruminants production systems. The review procedures were carried out using an exploratory approach through literature studies sourced from Web of Science, Scopus, and PubMed, which were scientific databases capable of storing high-quality articles. The results showed that innovation and technology in feed processing (such as Handheld Near-Infrared (NIR) spectroscopy devices, heating methods, precision grinding techniques, integrating ultrasonic treatment with enzyme supplementation and microwave-assisted alkali treatments), enzyme supplementation, specifically cellulase and xylanase combined with encapsulation techniques, probiotic, prebiotic and synbiotic supplementation can increase nutrient digestibility, fermentation rate, nutrient availability, and absorption. Increasing nutrient digestibility in ruminants offered significant economic benefits, such as reducing input costs and increasing livestock productivity. Integration of various strategies is key to increasing productivity and sustainability in ruminants production systems. Increasing nutrient digestibility not only achieved higher productivity but also contributed to a sustainable and efficient food production system and ensured the long-term continuity of ruminants production.
References
Abeni, F. (2022). Effects of extrinsic factors on some rumination patterns: A review. Frontiers in Animal Science, 3. https://doi.org/10.3389/fanim.2022.1047829
Aboud, S. A., Altemimi, A. B., R. S. Al-HiIphy, A., Yi-Chen, L., & Cacciola, F. (2019). A Comprehensive Review on Infrared Heating Applications in Food Processing. Molecules, 24(22), 4125. https://doi.org/10.3390/molecules24224125
Acosta, J. A., Petry, A. L., Gould, S. A., Jones, C. K., Stark, C. R., Fahrenholz, A., & Patience, J. F. (2020). Effects of grinding method and particle size of wheat grain on energy and nutrient digestibility in growing and finishing pigs. Translational Animal Science, 4(2), 682–693. https://doi.org/10.1093/tas/txaa062
Almassri, N., Trujillo, F. J., & Terefe, N. S. (2024). Microencapsulation technology for delivery of enzymes in ruminant feed. Frontiers in Veterinary Science, 11. https://doi.org/10.3389/fvets.2024.1352375
Al-Shawi, S. G., Dang, D. S., Yousif, A. Y., Al-Younis, Z. K., Najm, T. A., & Matarneh, S. K. (2020). The Potential Use of Probiotics to Improve Animal Health, Efficiency, and Meat Quality: A Review. Agriculture, 10(10), 452. https://doi.org/10.3390/agriculture10100452
Bhardwaj, N., Kumar, B., & Verma, P. (2019). A detailed overview of xylanases: an emerging biomolecule for current and future prospective. Bioresources and Bioprocessing, 6(1), 40. https://doi.org/10.1186/s40643-019-0276-2
Boudalia, S., Smeti, S., Dawit, M., Senbeta, E. K., Gueroui, Y., Dotas, V., Bousbia, A., & Symeon, G. K. (2024). Alternative Approaches to Feeding Small Ruminants and Their Potential Benefits. Animals, 14(6), 904. https://doi.org/10.3390/ani14060904
Bren, A., Denisenko, Y., Prazdnova, E., Mazanko, M., Gorovtsov, A., Chistyakov, V., Pakhomov, V., Rudoy, D., & Olshevskaya, A. (2023). Development of Synbiotic Preparations That Restore the Properties of Cattle Feed Affected by Toxin-Forming Micromycetes. Agriculture, 13(3), 523. https://doi.org/10.3390/agriculture13030523
Carboni, A. D., Martins, G. N., Castilho, P. C., Puppo, M. C., & Ferrero, C. (2024). Influence of Thermal Treatment and Granulometry on Physicochemical, Techno-Functional and Nutritional Properties of Lentil Flours. Foods, 13(17), 2744. https://doi.org/10.3390/foods13172744
Cherney, J. H., Digman, M. F., & Cherney, D. J. (2021). Handheld NIRS for forage evaluation. Computers and Electronics in Agriculture, 190, 106469. https://doi.org/10.1016/j.compag.2021.106469
Choi, H., Mun, D., Ryu, S., Kwak, M., Kim, B.-K., Park, D.-J., Oh, S., & Kim, Y. (2023). Molecular characterization and functionality of rumen-derived extracellular vesicles using a Caenorhabditis elegans animal model. Journal of Animal Science and Technology, 65(3), 652–663. https://doi.org/10.5187/jast.2022.e124
Dębowski, M., Zieliński, M., Nowicka, A., & Kazimierowicz, J. (2024). Influence of Microwave-Assisted Chemical Thermohydrolysis of Lignocellulosic Waste Biomass on Anaerobic Digestion Efficiency. Energies, 17(17), 4207. https://doi.org/10.3390/en17174207
Galli, G. M., Andretta, I., Levesque, C., Stefanello, T., Carvalho, C. L., Perez Pelencia, J. Y., Bueno Martins, G., Souza de Lima Cony, B., Romeiro de Oliveira, C., Franceschi, C. H., & Kipper, M. (2024). Using probiotics to improve nutrient digestibility and gut-health of weaned pigs: a comparison of maternal and nursery supplementation strategies. Frontiers in Veterinary Science, 11. https://doi.org/10.3389/fvets.2024.1356455
Garba, A., & Sema, Y. (2023). Role of Encapsulation Nutrients for Improvement of Ruminant Performance and Ruminant Derived -Products. 109–126.
Grassino, A. N., Ostojić, J., Miletić, V., Djaković, S., Bosiljkov, T., Zorić, Z., Ježek, D., Rimac Brnčić, S., & Brnčić, M. (2020). Application of high hydrostatic pressure and ultrasound-assisted extractions as a novel approach for pectin and polyphenols recovery from tomato peel waste. Innovative Food Science & Emerging Technologies, 64, 102424. https://doi.org/10.1016/j.ifset.2020.102424
Guo, Z., Zhao, B., Li, H., Miao, S., & Zheng, B. (2019). Optimization of ultrasound-microwave synergistic extraction of prebiotic oligosaccharides from sweet potatoes (Ipomoea batatas L.). Innovative Food Science & Emerging Technologies, 54, 51–63. https://doi.org/10.1016/j.ifset.2019.03.009
Han, C., Guo, Y., Cai, X., & Yang, R. (2022). Starch Properties, Nutrients Profiles, In Vitro Ruminal Fermentation and Molecular Structure of Corn Processed in Different Ways. Fermentation, 8(7), 315. https://doi.org/10.3390/fermentation8070315
Huang, K., Yang, B., Xu, Z., Chen, H., & Wang, J. (2023). The early life immune dynamics and cellular drivers at single-cell resolution in lamb forestomachs and abomasum. Journal of Animal Science and Biotechnology, 14(1), 130. https://doi.org/10.1186/s40104-023-00933-1
Ilić, N., Milić, M., Beluhan, S., & Dimitrijević-Branković, S. (2023). Cellulases: From Lignocellulosic Biomass to Improved Production. Energies, 16(8), 3598. https://doi.org/10.3390/en16083598
Ji, J., Jin, W., Liu, S., Jiao, Z., & Li, X. (2023). Probiotics, prebiotics, and postbiotics in health and disease. MedComm, 4(6). https://doi.org/10.1002/mco2.420
Kokić, B., Dokić, L., Pezo, L., Jovanović, R., Spasevski, N., Kojić, J., & Hadnađev, M. (2022). Physicochemical Changes of Heat-Treated Corn Grain Used in Ruminant Nutrition. Animals, 12(17), 2234. https://doi.org/10.3390/ani12172234
Lambo, M. T., Chang, X., & Liu, D. (2021). The Recent Trend in the Use of Multistrain Probiotics in Livestock Production: An Overview. Animals, 11(10), 2805. https://doi.org/10.3390/ani11102805
Liu, K., Zhang, Y., Yu, Z., Xu, Q., Zheng, N., Zhao, S., Huang, G., & Wang, J. (2021). Ruminal microbiota–host interaction and its effect on nutrient metabolism. Animal Nutrition, 7(1), 49–55. https://doi.org/10.1016/j.aninu.2020.12.001
Lyu, F., Thomas, M., Hendriks, W. H., & van der Poel, A. F. B. (2020). Size reduction in feed technology and methods for determining, expressing and predicting particle size: A review. Animal Feed Science and Technology, 261, 114347. https://doi.org/10.1016/j.anifeedsci.2019.114347
Martin, D. S., Ibarruri, J., Luengo, N., Ferrer, J., García-Rodríguez, A., Goiri, I., Atxaerandio, R., Medjadbi, M., Zufía, J., Sáez de Cámara, E., & Iñarra, B. (2023). Evaluation of Valorisation Strategies to Improve Spent Coffee Grounds’ Nutritional Value as an Ingredient for Ruminants’ Diets. Animals, 13(9), 1477. https://doi.org/10.3390/ani13091477
Martin, M. G., Cordero-Llarena, J. F., Voy, B. H., McLean, K. J., & Myer, P. R. (2024). The Rumen and Gastrointestinal Microbial Environment and Its Association with Feed Efficiency and Pregnancy in Female Beef Cattle. Applied Microbiology, 4(4), 1422–1433. https://doi.org/10.3390/applmicrobiol4040098
Martínez, J. R. P. F., López, D. de J. P., Cuevas, R. S., Salem, A. Z. M., Robles-Jimenez, L. E., & Ronquillo, M. G. (2020). Effect of xylanase, cellulase and natural maguey extract on the chemical composition of corn silage and in vitro rumen gas production. International Journal of Agriculture and Natural Resources, 47(1), 23–34. https://doi.org/10.7764/ijanr.v47i1.2128
Mayulu, H. (2021). Sapi Potong dan Manajemen Usaha. P.T. RajaGrafindo Persada.
Mayulu, H. (2023). Role of Animal Husbandry Nutrition Science on Feed, Food and Environment Safety. Technium BioChemMed, 6, 12–21. https://doi.org/10.47577/biochemmed.v6i.9554
Mayulu, H., Daru, T. P., & Tricahyadinata, I. (2023). In vitro evaluation of ruminal digestibility and fermentation characteristics of local feedstuff-based beef cattle ration. F1000Research, 11, 834. https://doi.org/10.12688/f1000research.123177.3
Mayulu, H., Maisyaroh, S., Rahmatullah, S. N., & Tricahyadinata, I. (2022). Influences of Conventional Feeding Regimen on the Productivity of Bali Cattle in Samarinda. American Journal of Animal and Veterinary Sciences, 17(4), 274–280. https://doi.org/10.3844/ajavsp.2022.274.280
Mendes de Oliveira, D., Pasquini, C., Rita de Araújo Nogueira, A., Dias Rabelo, M., Lúcia Ferreira Simeone, M., & Batista de Souza, G. (2024). Comparative analysis of compact and benchtop near-infrared spectrometers for forage nutritional trait measurements. Microchemical Journal, 196, 109682. https://doi.org/10.1016/j.microc.2023.109682
Michalak, M., Wojnarowski, K., Cholewińska, P., Szeligowska, N., Bawej, M., & Pacoń, J. (2021). Selected Alternative Feed Additives Used to Manipulate the Rumen Microbiome. Animals, 11(6), 1542. https://doi.org/10.3390/ani11061542
Mu, L., Wang, Q., Wang, Y., & Zhang, Z. (2023). Effects of cellulase and xylanase on fermentative profile, bacterial diversity, and in vitro degradation of mixed silage of agro-residue and alfalfa. Chemical and Biological Technologies in Agriculture, 10(1), 40. https://doi.org/10.1186/s40538-023-00409-4
Nalla, K., Manda, N. K., Dhillon, H. S., Kanade, S. R., Rokana, N., Hess, M., & Puniya, A. K. (2022). Impact of Probiotics on Dairy Production Efficiency. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.805963
Ortolani, I. R., Amanzougarene, Z., & Fondevila, M. (2020). In Vitro Estimation of the Effect of Grinding on Rumen Fermentation of Fibrous Feeds. Animals, 10(4), 732. https://doi.org/10.3390/ani10040732
Pérez, A. S. L., Castro, J. J. L., & Fajardo, C. A. G. (2024). Application of Microwave Energy to Biomass: A Comprehensive Review of Microwave-Assisted Technologies, Optimization Parameters, and the Strengths and Weaknesses. Journal of Manufacturing and Materials Processing, 8(3), 121. https://doi.org/10.3390/jmmp8030121
Pollini, L., Rocchi, R., Cossignani, L., Mañes, J., Compagnone, D., & Blasi, F. (2019). Phenol Profiling and Nutraceutical Potential of Lycium spp. Leaf Extracts Obtained with Ultrasound and Microwave Assisted Techniques. Antioxidants, 8(8), 260. https://doi.org/10.3390/antiox8080260
Poolthajit, S., Takaeh, S., Hahor, W., Nuntapong, N., Ngampongsai, W., & Thongprajukaew, K. (2024). Microwave Cooking of Some or All High Starch Ingredients of Cattle Feed Concentrate Improves Nutritional Value and In Vitro Bioavailability. Animals, 14(20), 3028. https://doi.org/10.3390/ani14203028
Prates, L. L., Rodríguez Espinosa, M. E., Feng, X., Tosta, M., He, J., & Yu, P. (2023). Impact of processing methods (dry-heating, autoclaving, and (microwave irradiation) on protein-related molecular structure spectral feature and protein nutritive value of cool-seasoned oat varieties in ruminant system in western Canada. Animal Feed Science and Technology, 304, 115736. https://doi.org/10.1016/j.anifeedsci.2023.115736
Saha, S., Fukuyama, K., Debnath, M., Namai, F., Nishiyama, K., & Kitazawa, H. (2023). Recent Advances in the Use of Probiotics to Improve Meat Quality of Small Ruminants: A Review. Microorganisms, 11(7), 1652. https://doi.org/10.3390/microorganisms11071652
Sanjorjo, R. A., Tseten, T., Kang, M.-K., Kwon, M., & Kim, S.-W. (2023). In Pursuit of Understanding the Rumen Microbiome. Fermentation, 9(2), 114. https://doi.org/10.3390/fermentation9020114
Shishir, M. S. R., Brodie, G., Cullen, B., & Cheng, L. (2022). Microwave Application for Animal Feed Processing to Improve Animal Performance. In Agritech: Innovative Agriculture Using Microwaves and Plasmas (pp. 147–164). Springer Singapore. https://doi.org/10.1007/978-981-16-3891-6_10
Silva, É. B. R. da, Silva, J. A. R. da, Silva, W. C. da, Belo, T. S., Sousa, C. E. L., Santos, M. R. P. dos, Neves, K. A. L., Rodrigues, T. C. G. de C., Camargo-Júnior, R. N. C., & Lourenço-Júnior, J. de B. (2024). A Review of the Rumen Microbiota and the Different Molecular Techniques Used to Identify Microorganisms Found in the Rumen Fluid of Ruminants. Animals, 14(10), 1448. https://doi.org/10.3390/ani14101448
Sun, X., Pacheco, D., Taylor, G., Janssen, P. H., & Swainson, N. M. (2022). Evaluation of Feed Near-Infrared Reflectance Spectra as Predictors of Methane Emissions from Ruminants. Animals, 12(18), 2478. https://doi.org/10.3390/ani12182478
Sureshkumar, S., Song, J., Sampath, V., & Kim, I. (2023). Exogenous Enzymes as Zootechnical Additives in Monogastric Animal Feed: A Review. Agriculture, 13(12), 2195. https://doi.org/10.3390/agriculture13122195
Tepe, A., & Altaş, T. (2024). Technological Processes Applied to Laboratory Animal Feeds and New Feeding Approaches. Düzce Tıp Fakültesi Dergisi, 26(S1), 24–29. https://doi.org/10.18678/dtfd.1504013
Tolve, R., Tchuenbou-Magaia, F., Di Cairano, M., Caruso, M. C., Scarpa, T., & Galgano, F. (2021). Encapsulation of bioactive compounds for the formulation of functional animal feeds: The biofortification of derivate foods. Animal Feed Science and Technology, 279, 115036. https://doi.org/10.1016/j.anifeedsci.2021.115036
Velázquez-De Lucio, B. S., Hernández-Domínguez, E. M., Villa-García, M., Díaz-Godínez, G., Mandujano-Gonzalez, V., Mendoza-Mendoza, B., & Álvarez-Cervantes, J. (2021). Exogenous Enzymes as Zootechnical Additives in Animal Feed: A Review. Catalysts, 11(7), 851. https://doi.org/10.3390/catal11070851
Vinhas, S., Sarraguça, M., Moniz, T., Reis, S., & Rangel, M. (2023). A New Microwave-Assisted Protocol for Cellulose Extraction from Eucalyptus and Pine Tree Wood Waste. Polymers, 16(1), 20. https://doi.org/10.3390/polym16010020
Wang, D., Tang, G., Wang, Y., Yu, J., Chen, L., Chen, J., Wu, Y., Zhang, Y., Cao, Y., & Yao, J. (2023). Rumen bacterial cluster identification and its influence on rumen metabolites and growth performance of young goats. Animal Nutrition, 15, 34–44. https://doi.org/10.1016/j.aninu.2023.05.013
Wu, Y., Yao, S., Narale, B. A., Shanmugam, A., Mettu, S., & Ashokkumar, M. (2022). Ultrasonic Processing of Food Waste to Generate Value-Added Products. Foods, 11(14), 2035. https://doi.org/10.3390/foods11142035
Xiao, D., & Meng, T. (2024). Nutritional Value Evaluation and Processing Technology of Feed and Nutrition Regulation Measures for Ruminants. Animals, 14(21), 3153. https://doi.org/10.3390/ani14213153
Yamada, W., Cherney, J., Cherney, D., Runge, T., & Digman, M. (2024). Handheld Near-Infrared Spectroscopy for Undried Forage Quality Estimation. Sensors, 24(16), 5136. https://doi.org/10.3390/s24165136
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Hamdi Mayulu, Taufan Purwakusumaning Daru, Julinda Romauli Manullang, Fandini Meilia Anjani, Ardiansyah, Irsan Tricahyadinata

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.