Optimizing Economic Value Through Enhanced Nutrient Digestibility in Ruminants: Recent Advances and Implications

Authors

Keywords:

digestibility, nutrient, ruminants, optimization, efficiency, economy

Abstract

Efficient nutrient digestibility is essential to optimize feed efficiency, performance, and productivity in ruminants production. Therefore, this review aims to explore economic implications of technology to increase nutrient digestibility in ruminants production systems. The review procedures were carried out using an exploratory approach through literature studies sourced from Web of Science, Scopus, and PubMed, which were scientific databases capable of storing high-quality articles. The results showed that innovation and technology in feed processing (such as Handheld Near-Infrared (NIR) spectroscopy devices, heating methods, precision grinding techniques, integrating ultrasonic treatment with enzyme supplementation and microwave-assisted alkali treatments), enzyme supplementation, specifically cellulase and xylanase combined with encapsulation techniques, probiotic, prebiotic and synbiotic supplementation can increase nutrient digestibility, fermentation rate, nutrient availability, and absorption. Increasing nutrient digestibility in ruminants offered significant economic benefits, such as reducing input costs and increasing livestock productivity. Integration of various strategies is key to increasing productivity and sustainability in ruminants production systems. Increasing nutrient digestibility not only achieved higher productivity but also contributed to a sustainable and efficient food production system and ensured the long-term continuity of ruminants production.

References

Abeni, F. (2022). Effects of extrinsic factors on some rumination patterns: A review. Frontiers in Animal Science, 3. https://doi.org/10.3389/fanim.2022.1047829

Aboud, S. A., Altemimi, A. B., R. S. Al-HiIphy, A., Yi-Chen, L., & Cacciola, F. (2019). A Comprehensive Review on Infrared Heating Applications in Food Processing. Molecules, 24(22), 4125. https://doi.org/10.3390/molecules24224125

Acosta, J. A., Petry, A. L., Gould, S. A., Jones, C. K., Stark, C. R., Fahrenholz, A., & Patience, J. F. (2020). Effects of grinding method and particle size of wheat grain on energy and nutrient digestibility in growing and finishing pigs. Translational Animal Science, 4(2), 682–693. https://doi.org/10.1093/tas/txaa062

Almassri, N., Trujillo, F. J., & Terefe, N. S. (2024). Microencapsulation technology for delivery of enzymes in ruminant feed. Frontiers in Veterinary Science, 11. https://doi.org/10.3389/fvets.2024.1352375

Al-Shawi, S. G., Dang, D. S., Yousif, A. Y., Al-Younis, Z. K., Najm, T. A., & Matarneh, S. K. (2020). The Potential Use of Probiotics to Improve Animal Health, Efficiency, and Meat Quality: A Review. Agriculture, 10(10), 452. https://doi.org/10.3390/agriculture10100452

Bhardwaj, N., Kumar, B., & Verma, P. (2019). A detailed overview of xylanases: an emerging biomolecule for current and future prospective. Bioresources and Bioprocessing, 6(1), 40. https://doi.org/10.1186/s40643-019-0276-2

Boudalia, S., Smeti, S., Dawit, M., Senbeta, E. K., Gueroui, Y., Dotas, V., Bousbia, A., & Symeon, G. K. (2024). Alternative Approaches to Feeding Small Ruminants and Their Potential Benefits. Animals, 14(6), 904. https://doi.org/10.3390/ani14060904

Bren, A., Denisenko, Y., Prazdnova, E., Mazanko, M., Gorovtsov, A., Chistyakov, V., Pakhomov, V., Rudoy, D., & Olshevskaya, A. (2023). Development of Synbiotic Preparations That Restore the Properties of Cattle Feed Affected by Toxin-Forming Micromycetes. Agriculture, 13(3), 523. https://doi.org/10.3390/agriculture13030523

Carboni, A. D., Martins, G. N., Castilho, P. C., Puppo, M. C., & Ferrero, C. (2024). Influence of Thermal Treatment and Granulometry on Physicochemical, Techno-Functional and Nutritional Properties of Lentil Flours. Foods, 13(17), 2744. https://doi.org/10.3390/foods13172744

Cherney, J. H., Digman, M. F., & Cherney, D. J. (2021). Handheld NIRS for forage evaluation. Computers and Electronics in Agriculture, 190, 106469. https://doi.org/10.1016/j.compag.2021.106469

Choi, H., Mun, D., Ryu, S., Kwak, M., Kim, B.-K., Park, D.-J., Oh, S., & Kim, Y. (2023). Molecular characterization and functionality of rumen-derived extracellular vesicles using a Caenorhabditis elegans animal model. Journal of Animal Science and Technology, 65(3), 652–663. https://doi.org/10.5187/jast.2022.e124

Dębowski, M., Zieliński, M., Nowicka, A., & Kazimierowicz, J. (2024). Influence of Microwave-Assisted Chemical Thermohydrolysis of Lignocellulosic Waste Biomass on Anaerobic Digestion Efficiency. Energies, 17(17), 4207. https://doi.org/10.3390/en17174207

Galli, G. M., Andretta, I., Levesque, C., Stefanello, T., Carvalho, C. L., Perez Pelencia, J. Y., Bueno Martins, G., Souza de Lima Cony, B., Romeiro de Oliveira, C., Franceschi, C. H., & Kipper, M. (2024). Using probiotics to improve nutrient digestibility and gut-health of weaned pigs: a comparison of maternal and nursery supplementation strategies. Frontiers in Veterinary Science, 11. https://doi.org/10.3389/fvets.2024.1356455

Garba, A., & Sema, Y. (2023). Role of Encapsulation Nutrients for Improvement of Ruminant Performance and Ruminant Derived -Products. 109–126.

Grassino, A. N., Ostojić, J., Miletić, V., Djaković, S., Bosiljkov, T., Zorić, Z., Ježek, D., Rimac Brnčić, S., & Brnčić, M. (2020). Application of high hydrostatic pressure and ultrasound-assisted extractions as a novel approach for pectin and polyphenols recovery from tomato peel waste. Innovative Food Science & Emerging Technologies, 64, 102424. https://doi.org/10.1016/j.ifset.2020.102424

Guo, Z., Zhao, B., Li, H., Miao, S., & Zheng, B. (2019). Optimization of ultrasound-microwave synergistic extraction of prebiotic oligosaccharides from sweet potatoes (Ipomoea batatas L.). Innovative Food Science & Emerging Technologies, 54, 51–63. https://doi.org/10.1016/j.ifset.2019.03.009

Han, C., Guo, Y., Cai, X., & Yang, R. (2022). Starch Properties, Nutrients Profiles, In Vitro Ruminal Fermentation and Molecular Structure of Corn Processed in Different Ways. Fermentation, 8(7), 315. https://doi.org/10.3390/fermentation8070315

Huang, K., Yang, B., Xu, Z., Chen, H., & Wang, J. (2023). The early life immune dynamics and cellular drivers at single-cell resolution in lamb forestomachs and abomasum. Journal of Animal Science and Biotechnology, 14(1), 130. https://doi.org/10.1186/s40104-023-00933-1

Ilić, N., Milić, M., Beluhan, S., & Dimitrijević-Branković, S. (2023). Cellulases: From Lignocellulosic Biomass to Improved Production. Energies, 16(8), 3598. https://doi.org/10.3390/en16083598

Ji, J., Jin, W., Liu, S., Jiao, Z., & Li, X. (2023). Probiotics, prebiotics, and postbiotics in health and disease. MedComm, 4(6). https://doi.org/10.1002/mco2.420

Kokić, B., Dokić, L., Pezo, L., Jovanović, R., Spasevski, N., Kojić, J., & Hadnađev, M. (2022). Physicochemical Changes of Heat-Treated Corn Grain Used in Ruminant Nutrition. Animals, 12(17), 2234. https://doi.org/10.3390/ani12172234

Lambo, M. T., Chang, X., & Liu, D. (2021). The Recent Trend in the Use of Multistrain Probiotics in Livestock Production: An Overview. Animals, 11(10), 2805. https://doi.org/10.3390/ani11102805

Liu, K., Zhang, Y., Yu, Z., Xu, Q., Zheng, N., Zhao, S., Huang, G., & Wang, J. (2021). Ruminal microbiota–host interaction and its effect on nutrient metabolism. Animal Nutrition, 7(1), 49–55. https://doi.org/10.1016/j.aninu.2020.12.001

Lyu, F., Thomas, M., Hendriks, W. H., & van der Poel, A. F. B. (2020). Size reduction in feed technology and methods for determining, expressing and predicting particle size: A review. Animal Feed Science and Technology, 261, 114347. https://doi.org/10.1016/j.anifeedsci.2019.114347

Martin, D. S., Ibarruri, J., Luengo, N., Ferrer, J., García-Rodríguez, A., Goiri, I., Atxaerandio, R., Medjadbi, M., Zufía, J., Sáez de Cámara, E., & Iñarra, B. (2023). Evaluation of Valorisation Strategies to Improve Spent Coffee Grounds’ Nutritional Value as an Ingredient for Ruminants’ Diets. Animals, 13(9), 1477. https://doi.org/10.3390/ani13091477

Martin, M. G., Cordero-Llarena, J. F., Voy, B. H., McLean, K. J., & Myer, P. R. (2024). The Rumen and Gastrointestinal Microbial Environment and Its Association with Feed Efficiency and Pregnancy in Female Beef Cattle. Applied Microbiology, 4(4), 1422–1433. https://doi.org/10.3390/applmicrobiol4040098

Martínez, J. R. P. F., López, D. de J. P., Cuevas, R. S., Salem, A. Z. M., Robles-Jimenez, L. E., & Ronquillo, M. G. (2020). Effect of xylanase, cellulase and natural maguey extract on the chemical composition of corn silage and in vitro rumen gas production. International Journal of Agriculture and Natural Resources, 47(1), 23–34. https://doi.org/10.7764/ijanr.v47i1.2128

Mayulu, H. (2021). Sapi Potong dan Manajemen Usaha. P.T. RajaGrafindo Persada.

Mayulu, H. (2023). Role of Animal Husbandry Nutrition Science on Feed, Food and Environment Safety. Technium BioChemMed, 6, 12–21. https://doi.org/10.47577/biochemmed.v6i.9554

Mayulu, H., Daru, T. P., & Tricahyadinata, I. (2023). In vitro evaluation of ruminal digestibility and fermentation characteristics of local feedstuff-based beef cattle ration. F1000Research, 11, 834. https://doi.org/10.12688/f1000research.123177.3

Mayulu, H., Maisyaroh, S., Rahmatullah, S. N., & Tricahyadinata, I. (2022). Influences of Conventional Feeding Regimen on the Productivity of Bali Cattle in Samarinda. American Journal of Animal and Veterinary Sciences, 17(4), 274–280. https://doi.org/10.3844/ajavsp.2022.274.280

Mendes de Oliveira, D., Pasquini, C., Rita de Araújo Nogueira, A., Dias Rabelo, M., Lúcia Ferreira Simeone, M., & Batista de Souza, G. (2024). Comparative analysis of compact and benchtop near-infrared spectrometers for forage nutritional trait measurements. Microchemical Journal, 196, 109682. https://doi.org/10.1016/j.microc.2023.109682

Michalak, M., Wojnarowski, K., Cholewińska, P., Szeligowska, N., Bawej, M., & Pacoń, J. (2021). Selected Alternative Feed Additives Used to Manipulate the Rumen Microbiome. Animals, 11(6), 1542. https://doi.org/10.3390/ani11061542

Mu, L., Wang, Q., Wang, Y., & Zhang, Z. (2023). Effects of cellulase and xylanase on fermentative profile, bacterial diversity, and in vitro degradation of mixed silage of agro-residue and alfalfa. Chemical and Biological Technologies in Agriculture, 10(1), 40. https://doi.org/10.1186/s40538-023-00409-4

Nalla, K., Manda, N. K., Dhillon, H. S., Kanade, S. R., Rokana, N., Hess, M., & Puniya, A. K. (2022). Impact of Probiotics on Dairy Production Efficiency. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.805963

Ortolani, I. R., Amanzougarene, Z., & Fondevila, M. (2020). In Vitro Estimation of the Effect of Grinding on Rumen Fermentation of Fibrous Feeds. Animals, 10(4), 732. https://doi.org/10.3390/ani10040732

Pérez, A. S. L., Castro, J. J. L., & Fajardo, C. A. G. (2024). Application of Microwave Energy to Biomass: A Comprehensive Review of Microwave-Assisted Technologies, Optimization Parameters, and the Strengths and Weaknesses. Journal of Manufacturing and Materials Processing, 8(3), 121. https://doi.org/10.3390/jmmp8030121

Pollini, L., Rocchi, R., Cossignani, L., Mañes, J., Compagnone, D., & Blasi, F. (2019). Phenol Profiling and Nutraceutical Potential of Lycium spp. Leaf Extracts Obtained with Ultrasound and Microwave Assisted Techniques. Antioxidants, 8(8), 260. https://doi.org/10.3390/antiox8080260

Poolthajit, S., Takaeh, S., Hahor, W., Nuntapong, N., Ngampongsai, W., & Thongprajukaew, K. (2024). Microwave Cooking of Some or All High Starch Ingredients of Cattle Feed Concentrate Improves Nutritional Value and In Vitro Bioavailability. Animals, 14(20), 3028. https://doi.org/10.3390/ani14203028

Prates, L. L., Rodríguez Espinosa, M. E., Feng, X., Tosta, M., He, J., & Yu, P. (2023). Impact of processing methods (dry-heating, autoclaving, and (microwave irradiation) on protein-related molecular structure spectral feature and protein nutritive value of cool-seasoned oat varieties in ruminant system in western Canada. Animal Feed Science and Technology, 304, 115736. https://doi.org/10.1016/j.anifeedsci.2023.115736

Saha, S., Fukuyama, K., Debnath, M., Namai, F., Nishiyama, K., & Kitazawa, H. (2023). Recent Advances in the Use of Probiotics to Improve Meat Quality of Small Ruminants: A Review. Microorganisms, 11(7), 1652. https://doi.org/10.3390/microorganisms11071652

Sanjorjo, R. A., Tseten, T., Kang, M.-K., Kwon, M., & Kim, S.-W. (2023). In Pursuit of Understanding the Rumen Microbiome. Fermentation, 9(2), 114. https://doi.org/10.3390/fermentation9020114

Shishir, M. S. R., Brodie, G., Cullen, B., & Cheng, L. (2022). Microwave Application for Animal Feed Processing to Improve Animal Performance. In Agritech: Innovative Agriculture Using Microwaves and Plasmas (pp. 147–164). Springer Singapore. https://doi.org/10.1007/978-981-16-3891-6_10

Silva, É. B. R. da, Silva, J. A. R. da, Silva, W. C. da, Belo, T. S., Sousa, C. E. L., Santos, M. R. P. dos, Neves, K. A. L., Rodrigues, T. C. G. de C., Camargo-Júnior, R. N. C., & Lourenço-Júnior, J. de B. (2024). A Review of the Rumen Microbiota and the Different Molecular Techniques Used to Identify Microorganisms Found in the Rumen Fluid of Ruminants. Animals, 14(10), 1448. https://doi.org/10.3390/ani14101448

Sun, X., Pacheco, D., Taylor, G., Janssen, P. H., & Swainson, N. M. (2022). Evaluation of Feed Near-Infrared Reflectance Spectra as Predictors of Methane Emissions from Ruminants. Animals, 12(18), 2478. https://doi.org/10.3390/ani12182478

Sureshkumar, S., Song, J., Sampath, V., & Kim, I. (2023). Exogenous Enzymes as Zootechnical Additives in Monogastric Animal Feed: A Review. Agriculture, 13(12), 2195. https://doi.org/10.3390/agriculture13122195

Tepe, A., & Altaş, T. (2024). Technological Processes Applied to Laboratory Animal Feeds and New Feeding Approaches. Düzce Tıp Fakültesi Dergisi, 26(S1), 24–29. https://doi.org/10.18678/dtfd.1504013

Tolve, R., Tchuenbou-Magaia, F., Di Cairano, M., Caruso, M. C., Scarpa, T., & Galgano, F. (2021). Encapsulation of bioactive compounds for the formulation of functional animal feeds: The biofortification of derivate foods. Animal Feed Science and Technology, 279, 115036. https://doi.org/10.1016/j.anifeedsci.2021.115036

Velázquez-De Lucio, B. S., Hernández-Domínguez, E. M., Villa-García, M., Díaz-Godínez, G., Mandujano-Gonzalez, V., Mendoza-Mendoza, B., & Álvarez-Cervantes, J. (2021). Exogenous Enzymes as Zootechnical Additives in Animal Feed: A Review. Catalysts, 11(7), 851. https://doi.org/10.3390/catal11070851

Vinhas, S., Sarraguça, M., Moniz, T., Reis, S., & Rangel, M. (2023). A New Microwave-Assisted Protocol for Cellulose Extraction from Eucalyptus and Pine Tree Wood Waste. Polymers, 16(1), 20. https://doi.org/10.3390/polym16010020

Wang, D., Tang, G., Wang, Y., Yu, J., Chen, L., Chen, J., Wu, Y., Zhang, Y., Cao, Y., & Yao, J. (2023). Rumen bacterial cluster identification and its influence on rumen metabolites and growth performance of young goats. Animal Nutrition, 15, 34–44. https://doi.org/10.1016/j.aninu.2023.05.013

Wu, Y., Yao, S., Narale, B. A., Shanmugam, A., Mettu, S., & Ashokkumar, M. (2022). Ultrasonic Processing of Food Waste to Generate Value-Added Products. Foods, 11(14), 2035. https://doi.org/10.3390/foods11142035

Xiao, D., & Meng, T. (2024). Nutritional Value Evaluation and Processing Technology of Feed and Nutrition Regulation Measures for Ruminants. Animals, 14(21), 3153. https://doi.org/10.3390/ani14213153

Yamada, W., Cherney, J., Cherney, D., Runge, T., & Digman, M. (2024). Handheld Near-Infrared Spectroscopy for Undried Forage Quality Estimation. Sensors, 24(16), 5136. https://doi.org/10.3390/s24165136

Downloads

Published

2025-06-01

Issue

Section

Articles